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The establishment of CSTER-perfect mixer networks via the theory of Markov chains for non-ideal 
tank electrolysers is described. Such networks, matched to tank electrolysers via experimental 
exit-age distribution data, can serve (as equivalent models) for the analysis of electrolyser behaviour. 

Nomenclature 

A electrode area 
c electrolyte concentration; c~ same for inlet conditions; cl same for exit conditions 
E exit age 
k M mean mass transport coefficient 
P transition probability matrix with elements pC 
Q volumetric flow rate of the electrolyte 
t time 
V effective electrolyser volume 
X(t) time-dependent random process 

recycle ratio 
/~ lumped parameter, equal to kmA/Q 

symbol denoting the state of a Markov chain 
0 dimensionless time, equal to Qt/V 

1. Introduction 

In the analysis of tank electrolysers the CSTER (continuous-flow stirred-tank electrolytic reactor) 
concept has been used widely, e.g. [1-3], due to the relatively simple mathematical structure of its 
governing (balance) equations. The approach, based on the perfect agitation postulate, cannot 
adequately describe the behaviour of a tank electrolyser with appreciable concentration and/or 
temperature gradients; one treatment of this problem in terms of a specific technique of stochastic 
system dynamics has recently been proposed [4]. An alternative approach to non-ideal tank elec- 
trolyser analysis can be made via experimental exit-age distribution studies where the behaviour of 
a real electrolyser is approximated - as closely as required - by an appropriate 'equivalent' 
network of CSTERs and ideal mixers. The Markov chain formulation can be chosen conveniently 
as the mathematical framework, inasmuch as associated finite difference equations are easily 
established on the basis of linear algebra and they can be quickly implemented on a relatively simple 
computing device (e.g. a programmable calculator). The usefulness of the Markov chain concept has 
been recently demonstrated in the analysis of flow systems and chemical reactors [5-8]; the purpose 
of this paper is to explore the scope and the attractiveness of this technique in electrochemical 
engineering where practical applications of probability theory are still scarce. 
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2. Theory 

Following the basic theory of Markov chains, summarized in Appendix A, the transitional prob- 
abilities (i.e. the elements of the transitional probability matrix P) in a CSTER operating under mass 
transport control can be expressed as follows. 
Flow 

Q at 
V 

Electrochemical reaction occurring at the limiting current 

kMA At 
V 

No change in the CSTER 

1 QAt kMA At 
V V 

These probabilities are the 'building blocks' of P in the following manner. Let m be the state at an 
arbitrary time interval and (m + 1) the state past an arbitrarily small At time interval. Then, Pu is 
the matrix element pertaining to no change for an entering electrolyte element, P,2 is the matrix 
element pertaining to the electrode reaction, Pl3 is the matrix element pertaining to bypass of an 
entering element to the exit (or absorbing) state and so forth; these matrix elements are independent 
of state m. Thus, the transition probability matrix is 

P = 0 1 - kMAAt kM At 
V 

0 0 

(1) 

where the zero elements denote the lack of recycling and the irreversibility of flow and reaction 
conditions. Replacing the exit concentration-time derivative in the substance balance 

d c  1 

dt 

by the forward-difference approximation 

dcl 
dt 

the iteration formula 

cl(m + 1) 

Q -~ kMA 

cl(m + 1) -- cl(m) 
At 

= cl(m)(1 QAt kMAAt) QAt 
V -- ' + - - p - c i  

= xi(m + 1) + c~(m)Pll (2) 

is obtained. If ci remains constant, then 

QAt 
xi(m + 1) = xi = - - F e i  = constant 

The accuracy of Equation 2 depends on the size of At; in a numerical implementation the maximum 
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value of At acceptable for a predetermined decimal accuracy can be quickly established by a 
systematic reduction procedure, as shown in Appendix B, where the results of numerical computa- 
tion via Markov chain modelling are compared with the analytical solution of  the CSTER equation. 

In applying this framework to the modelling of non-ideal tank electrolysers, the real electrolyser 
is replaced by a CSTER-perfect  mixer network whose theoretical exit-age distribution matches 
closely (i.e. within a predetermined numerical accuracy) the exit-age distribution determined experi- 
mentally. I fn  is the position of the last element in the network, adjacent to exit (or absorbing) state 
with identifying index (n 4- 1), the exit age distribution in the absence of recycle flow into the nth 
element is given by Equation 3: 

E(m)At = p~(m)p.,.+l (3) 

which is the probability that an electrolyte element will leave the electrolyser in the (m, m + 1) time 
interval, provided it entered the electrolyser at time instant m = 0. If time is normalized with respect 
to the apparent mean residence time, t = V/Q, the Markov chain analysis can be carried out in 
terms of fractional time 0 = Qt/V where A0 replaces At and the elements of P are modified 
accordingly. In the sequel, two specific networks will be analysed in detail, although any network 
with arbitrarily positioned CSTER and perfect mixer building blocks can, in principle, be con- 
structed. 

3. Model A: a two-element CSTER cascade with recycle 

As shown by the block diagram in Fig. 1, two CSTERs are in series in the forward loop, and a 
perfect mixer in the feedback loop indicates electrolyte recycling; they are indexed 1 to 3, respect- 
ively, and the exit or absorbing state has index 4. The model parameters are the recycle ratio ~, the 
lumped dimensionless mass-transport parameter/~ = kMA/Q, and A0 is the dimensionless time 

0.4 

0.5 
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0.2: 
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0 . 0 ~  
0.0 0.5 1.0 1.5 2.0 /9 

Fig. 1. Exit-age distribution curves via model A, as a function 
of the recycle ratio a (the numerical parameters are given in 
Appendix B). A0 = 0.02 (At = 1 min). 
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interval for transition. The transitional probabil i ty matrix 

0 1 -- A0 (1 + e) cA0 A0 
e = (4) 

c~AO 0 1 -- ccAO 

0 0 0 

contains t ime-invariant  elements, independent  o f  m. Consequently,  the state probabilities are 
computed  via the scheme 

pl(m + 1) = pup~(m) + p3,P3(m) (5a) 

p2(m + 1) = pup,(m) + p22p2(rn) (5b) 

p3(m + 1) = pz3pz(m) + p33P3(m) (5c) 

and the exit-age distribution is given by the formula 

E(m) = pz(m) (6) 

in terms of  the dimensionless time 0 = mAO. 

4 .  M o d e l  B:  m i x e r - C S T E R - m i x e r  cascade with recycle 

In this configurat ion a C S T E R  is embedded between two perfect mixers in the forward loop and, 
as in model A, electrolyte recycling is represented by a perfect mixer in the feedback loop (Fig. 2). 
As in the case o f  model  A, the system is fully described in terms o f  the c~ and/?  parameters  and A0. 

F(O)? 0 | Q Q 

0.5 

O.2~-J II I1". \ \ 

c2 : 2 . o  i 

o, o r  t I I I 
(3.0 I.O 2.o 5.o 4.0 0 

Fig 2. Exit-age distribution curves via model B, as a function 
of the recycle ratio e (the numerical parameters are given in 
Appendix B). A0 = 0.02 (At = 1 min). 
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The transitional probability matrix is given by 

p = 

1 - A0(1 + c~) 

0 

0 

c~A0 

0 

A0 (1 + c~) 0 0 0 

1 - A 0 ( 1  + ~  + f l )  A0(1 + ~ + f l )  0 0 

0 1 - A0 (1 + ~) c~A0 A0 

0 0 1 -- c~A0 0 

0 0 0 1 

and the state probabilities are computed as 

with exit-age distribution 

pl(m + 1) 

p2(m + 1) 

p3(m + 1) 

p4(m + 1) 

(7) 

= p , , p , ( m )  + p4,p4(rn) (8a) 

= P12P:(m) + pzzp2(m) (Sb) 

= P23Pz(m) + P33P3(m) (8c) 

= P34P3(m) + P44P4(m) (8d) 

E(m)  = p3(m) (9) 

5. Discussion: application to the modelling of non-ideal tank electrolysers 

The typical exit-age distribution curves shown in Figs 1 and 2 indicate that the shape of  the E curves 
and their maxima are a sensitive function of time; therefore, the curves are well suited for 
experiment-based identification. In so doing, the experimental exit-age distribution of an elec- 
trolyser is compared to theoretical E curves; the experimental technique has been described in detail 
in the literature (e.g. [9, 10]). As an illustration, the experimental E distribution of a hypothetical 
electrolyser given in Table I compares closely with the ~ = 1/model B curve in Fig. 2 with an error 
variance of 2.76 x 10-4; thus the behaviour of the electrolyser can be closely approximated by a 
configuration of mixer-CSTER-mixer-cascade with recycle, where the recycle ratio is unity. In 
further analysis of the electrolyser the linear analytical equations pertinent to this configuration can 
be employed as a replacement for non-ideality. Complications may, however, arise if the experi- 
mental exit-age distribution possesses comparable variances with respect to a number of  different 
model-oriented E curves; model discrimination methods, e.g. the maximum likelihood principle 
[11, 12] may serve for selecting the statistically 'best' model. 

Table 1. Experimental exit-age distribution in a hypothetical 
tank electrolyser for illustration 

o E(O) 

0.10 0.0167 
0.20 0.0628 
0.30 0.1192 
0.40 o. 1585 
0,50 0.2724 
0.60 0.2431 
0.70 0.2813 
1.00 0.3134 
1.20 0,2693 
1.50 0.2391 
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An alternative to the Markov chain approach, i.e. compartmental modelling based on continuous 
time, would treat the electrolyser as a continuous Markov chain via a stochastic differential equation 
(Kolmogorov equation) yielding the probability density function of random lifetime for the flow 
elements, its expectation and variance, etc. Since numerical improvements over the mathematically 
less cumbersome discrete Markov chain approach in other areas of stochastic flow reactor modelling 
[13] are modest, except in the case of very low mean residence times, the continuous-time alternative 
does not offer particular advantages for manipulative efficiency. 

Extension to sublimiting current conditions requires the inclusion of the fractional concentration 
factor 7(1) or 2(3) relating exit electrolyte concentration to surface electrolyte concentration: the 
numerical value of this factor is to be computed from an appropriate voltage balance if the imposed 
potential drop between anode and cathode is known. 

In conclusion, the Markov chain-based approach may serve as a viable means of treating 
non-ideal tank electrolyser behaviour, especially when spectral analysis required by a previously 
proposed alternative [4] is judged unattractive. Stochastic techniques may prove, in general, useful 
in the modelling of electrochemical systems, and research with this purpose in mind is well 
warranted. 
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Appendix A. Summary of Markov chain theory 

The concept of Markov chains has been widely used in various scientific areas, and many com- 
prehensive texts (e.g. [14-18]) are available for its study; this summary is based on a concise 
treatment by Rozanov [19]. 

Let a physical system be characterized by states e~, e2 and so on, any one of which is attainable 
randomly at discrete times (or continuously, in the case of continuous Markov chains), starting from 
some initial time t = 0. The following probabilities can be defined for a random variable X(t): 

(i) p0 = P[X(0) = e,]; i =  1 , 2 , . . .  (A1) 

is the probability that at zero time the system occupies state ~ 

(ii) Po = P[J((rn + 1) = e j[X(m)  = ~i]; i,j = 1, 2 , . . .  (A2) 

is the probability that the system occupies state ej at the (m + 1)th time instant, given that the state 
occupied at the mth time instant was ei. The transition probabilities pg do not depend on m. 

(iii) p/ (m)  = P [ X ( m )  = ej]; j = 1, 2 . . . .  (A3) 

is the probability that the system will be in state ej after m steps. Then, by the theorems of conditional 
probability, 

p/j(m) = ~ p i k ( m -  1)pkj; m = 1 , 2 , . . .  (A4) 
k 

or, alternatively, 

where 

Pj(m)  = ~ Pk(rn - l)Pkj; m = 1, 2 , . . .  
k 

0;; i -- j p/j(0) = i -r j (A5) 
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the latter relationship indicating the initial state o f  the chain. In  terms o f  the transit ional probabil i ty 
matrix, P = { Po }, the alternative representat ion o f  the chain is the vector matrix form 

p ( m )  = P(O) Pm (A6) 

where p m =  P ( m )  due to the rules o f  matrix multiplication. 
In the case o f  a reactor, the history o f  a molecule or  particle, (called an element), can be described 

via transitional probabilities related to flow and chemical reaction, e.g. Pii(m) is the probabil i ty that  
the element has not  flown out  o f  the system and has not  undergone  reaction at time instant  m [8]. 
A distinct probabil i ty to each physical change can be ascribed so that  every element in P is made  
up o f  such probabilities. The matrix element posit ions cor respond to physical locations o f  transition: 
if, for example, index 1 denotes the reactor  and index 2 denotes exit (known also as absorbing state, 
captor  state, death state in various areas o f  application) the P matrix element, p~2(m), is the 
probabil i ty that  at time instant m a physical element has exited while it was in the reactor  at time 
instant m - 1. Conversely, P2~ (rn) is the probabil i ty that  at time instant m the physical element is 
in the reactor while it was in the exit s tream at time instant m = 1; o f  course, P2l = 0, if there is 
no recycling or  backmixing.  In a perfectly mixed container  the transit ional probabil i ty o f  outflow 
over a period At is Q A t / V ;  the smaller the value o f  At the better the M a r k o v  chain approximat ion  
to a cont inuous  time-flow process. 

Appendix B. Numerical illustration for a CSTER 

The C S T E R  with a single electrode reaction at each electrode, but  considering only one electrode 
process o f  importance,  can be described by three states: (i) the reactant  state, (ii) the p roduc t  (e.g. 
electrode deposit) state, and (iii) the exit or absorbing state. There is no recycling or  backmixing; 
the inflow electrolyte concentra t ion is c~, and at zero time the concentra t ion in the C S T E R  is zero 
(arbitrary choice). The C S T E R  is operated at limiting current  conditions. The transitional probabil-  
ity matrix is given by Equat ion  1; assuming c~ = 0 . 0 4 m o l l  ~, Q = 21rain -1, A = 0 .956m 2, 
V = 1001, k M = 1.68 x 1 0 - 3 c m s  -~, the exit electrolyte concentra t ion equat ion (Equat ion 2) 
varies with At as shown in Table B1. 

Table B1. Variation of  c t (m + 1) with At 

At (rain) c t (m + 1) 

10.0 8 x 10 -3 + 0.70364G(m) 
5.0 4 • I0 3 + 0.85182ct(m) 
2.5 2 • 10 - 3  q- 0.92591ct (m) 
1.0 8 x 10 -4 + 0.97036ct(m ) 

Table B2. The effect of  At on solution accuracy 

m A t = 2 . 5 m m  

t (min) 103 c I (moll -1) 

Markov chain Analytical 

A t = l . O m m  

t (min) 103 c I (moll -s ) 

Markov chain Analytical 

0 2.5 2.0 1.928 1 0.8 0.7884 
1 5.0 3.713 3.718 2 1.576 1.554 
2 7.5 5.438 5.381 3 2.329 2.297 
3 10.0 6.982 6.924 4 3.060 3.017 
4 12.5 8.465 8.358 5 3.770 3.718 
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The  ana ly t i ca l  so lu t i on  

c~(t) = 0.026994 [1 - e x p ( - 0 . 0 2 9 6 4 0 ]  

agrees closely wi th  the  M a r k o v  c h a i n  so lu t ions  at  At ~< 1 m i n  as s h o w n  in  Tab l e  B2 (in this example  
At m u s t  be r a the r  smal l  since the  zero in i t ia l  c o n d i t i o n  o n  cl impl ies  a d i s c o n t i n u i t y  for  a discrete 
n u m e r i c a l  so lu t ion  at  very  smal l  phys ica l  t imes).  
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